Metamorphoses

Metadata for the merging of diverse atmospheric data on common subspaces

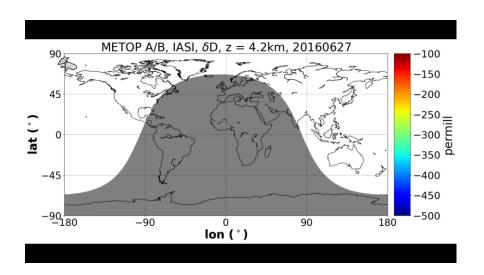
Objective:

- Develop standards for storage efficient decomposed arrays (important for satellite data reuse!)
- Satellite data fusion (synergetic combination of different satellite sensors)
- Data merging according to Lagrange trajectories (inter-connection of observations on Lagrange subspace)
- Short case study with atmospheric methane (document the scientific impact of the project)

Team:

Karlsruhe Institute of Technology,

<u>Institute of Meteorology and Climate Research (IMK-ASF):</u>

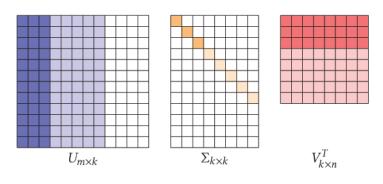

- Matthias Schneider
- NN (Postdoc or PHD Student in the field of satellite data fusion)
- Benjamin Ertl
- Peter Braesicke

Forschungszentrum Jülich,

Institut für Energie- und Klimaforschung, Stratosphäre (IEK-7):

- Rolf Müller
- Gebhard Günther
- NN

Standards for storage efficient decomposed arrays (important for satellite data reuse!)



- ≈ 300000 morning observations per day (local time 9:30)
- ≈ 300000 evening observations per day (local time 21:30)

In the meanwhile three satellites, i.e. about 1 million observations each 24h, even more with new satellite generations...

For each observation:

- Atmospheric states (profile in form of a vector, dimension n)
- Characterisation of the atmospheric state (arrays, dimension $n \times n$): Singular vector decomposition: $A = UDV^T$

Decomposed, storage efficient array:

- Rank
- Diagonal values
- Left eigenvectors
- Right eigenvectors

Synergetic use of IASI and TROPOMI for generating a tropospheric methane profile product

Matthias Schneider¹, Benjamin Ertl^{1,2}, Christopher Diekmann¹, Farahnaz Khosrawi¹, Amelie N. Röhling¹, Frank Hase¹, Darko Dubravica¹, Omaira E. García³, Eliezer Sepúlveda³, Alba Lorente⁴, Jochen Landgraf⁴, Huilin Chen⁵, Rigel Kivi⁶, Thomas Laemmel⁷, Michel Ramonet⁷, Cyril Crevoisier⁸, Jerome Pernin⁸, Martin Steinbacher⁹, Frank Meinhardt¹⁰, Voltaire A. Velazco¹¹, Nicholas M. Deutscher¹², David Griffith¹², Dave Pollard¹³, Hartmut Bösch¹⁴, Tim Trent¹⁴, Harald Sodemann¹⁵

1: Introduction + theoretical background

Measurements from different satellite-based sensors offer different sensitivities. Here, we propose a synergetic exploitation that uses L2 outputs generated by the standard retrievals of the different sensors (optimal a posteriori combination of individual retrieval products). The motivation is to have a computationally very efficient method, applicable to large data volumes.

Data assimilation formalism: $x^a = x^b + \mathbf{G}[y - \mathbf{H}x^b]$

 $\mathbf{G} = \mathbf{S}^b \mathbf{H}^T [\mathbf{H} \mathbf{S}^b \mathbf{H}^T + \mathbf{S}_{\varepsilon}]^{-1}$ Level 2 output as input

x^b: background state vector

→ MUSICA IASI profile product

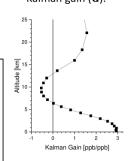
S^b: background state error covariances

→ MUSICA IASI a posteriori covariances

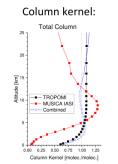
Reference sites:

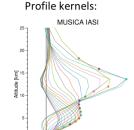
v: measurement state vector

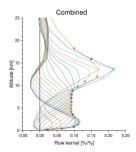
- → TROPOMI total column product
- H: measurement forward operator → TROPOMI total column kernel
- S_{ε} : measurement state error covariances
- → TROPOMI total column noise


Output:

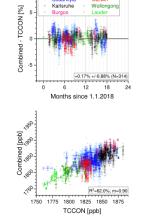
 x^a : analysed state vector


G: Kalman gain matrix

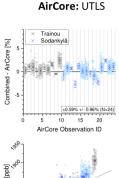

For linear and "moderately nonlinear" problems and adjusted IASI and TROPOMI a priori information, this analysed state vector (x^a) is mathematically equivalent estimation retrieval that uses a {IASI,TROPOMI} combined measurement state vector.


Kalman gain (G):

2: Theoretical performance

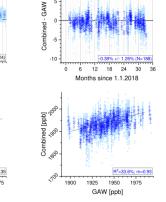


3: Validation


X TCCON

Longitude [°]

+ AirCore GAW

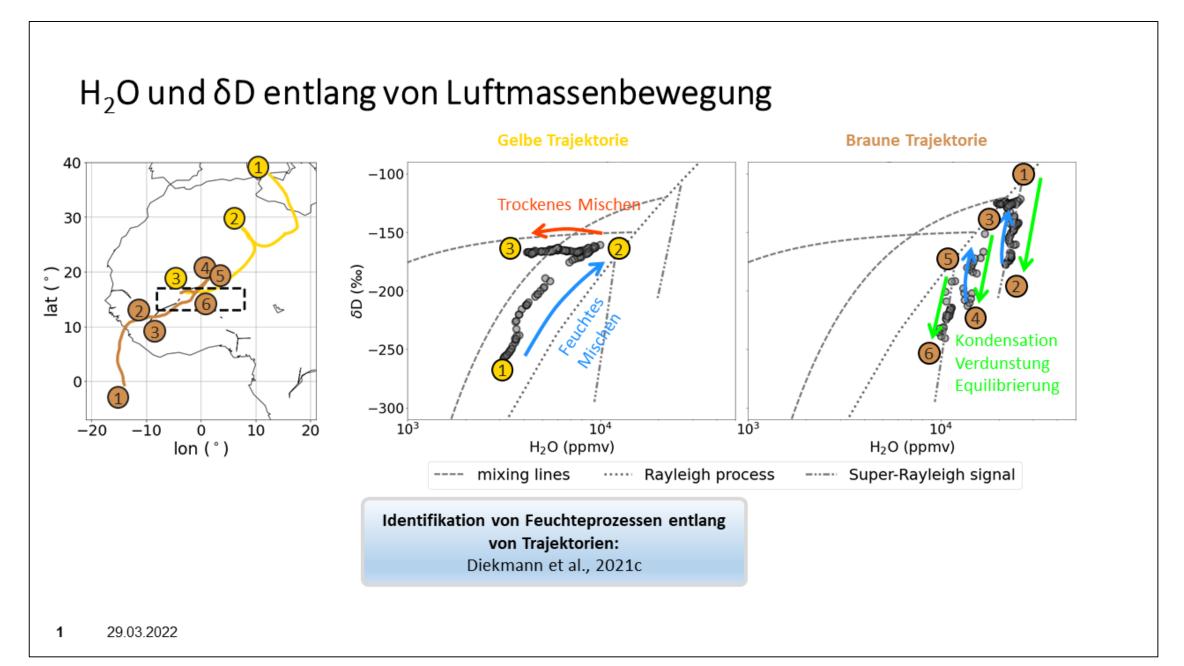


TCCON: total column

1850

1825

GAW: troposphere


4: Summary + outlook

- ➤ TROPOMI: good for XCH₄
- ➤ IASI: good for CH₄ in the UTLS
- ➤ IASI+TROPOMI: good for XCH₄, CH₄ in the UTLS, and CH₄ in the troposphere!

Row Kernel [%/%

- ➤ Theoretical uncertainty of profile data: ≈1%
- Scatter wrt validation references: 1-1.5%
- > IASI and TROPOMI successors will be together on the Metop Second Generation satellites, perfect for spatial collocation, very promising!
- > Applicable to other products, e.g. isotopologue ratios
- More details on the paper at AMTD: https://amt.copernicus.org/preprints/amt-2021-31/

Example of studies on Lagrange trajectories (here atmospheric water vapour isotopologue model data):

Link to HMC and expectations:

- The project will improve satellite data reuse, i.e. make the satellite data FAIRer
- The project will improve the possibilities for interpreting satellite data (in a Lagrange subspace)
- Data merging/fusion is important in many research fields, we can share experiences/ideas with others...
- Better understand the importance and potential of metadata for research
- We hope to get support from HMC, for instance for: registering/establishing standards, search for trajectory standards, ...

• ...

Thanks!